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Abstract

In this note, we discuss the applications of lattice theory to solving problems in distributed
systems. The first problem we consider is that of detecting a predicate in a computation,
i.e., determining whether there exists a consistent cut of the computation satisfying the given
predicate. The second problem involves computing the slice of a computation with respect to a
predicate. A slice is a concise representation of all those global states of the computation that
satisfy the given predicate. The third problem we consider is that of analyzing a partial order
trace of a distributed program to determine whether it satisfies the given temporal logic formula.
Finally, we consider the problem of timestamping events and global states of a computation to
capture the order relationship. We discuss how the results from lattice theory can be used in
solving each of the above problems.

1 Introduction

In 1978, Lamport in a seminal paper [Lam78] argued that the order of events that can be observed
in a distributed computation is only partial. He called this partial order the happened-before order
and presented a mechanism called logical clocks that gave a timestamp in a totally ordered domain
preserving the happened-before order. Since the theory of partial orders matured in 50’s and 60’s
mostly due to pioneering work by Birkhoff and Dilworth, it is natural to assume that the theory
of partial orders would then be applied to distributed computing in the next few years. However,
the progress in application of the theory of partial orders to distributed computing has been slow.
We discuss a few of these applications in distributed computing especially in the areas of global
property evaluation and timestamping events.

In 1985, Chandy and Lamport [CL85] defined a consistent cut, also called a consistent global
state. Let E be the set of events of a computation and → be the happened-before order on E. A
subset G of E is a consistent cut if whenever it contains an element f then it contains all elements e

that happened-before f . This concept is identical to the notion of order ideal in the lattice theory.
In that paper, they also gave a distributed algorithm to record a consistent cut

In 1989, Mattern [Mat89] showed that the set of all consistent cuts of a distributed computation
forms a lattice. This result is a special case of the theorem in lattice theory that the set of all ideals
of a partial order forms a distributive lattice. Note that Mattern (concurrently with Fidge [Fid91])
also defined a vector clock mechanism that can be used to timestamp events in a distributed
computation. Vector clocks have been used extensively in many distributed algorithms [Gar02b].



In 1991, Charron-Bost [CB91] gave a lower bound on the dimension of vector clocks using
dimension theory of partial orders. Dimension theory of partial orders was initiated by Dushnik
and Miller in 1941 [DM41]. In that paper, they also gave a family of posets Sn of width n which
had dimension n.

In 1995, Chase and Garg [CG95] defined linear predicates for efficient detection of global predi-
cates. It can be shown that a predicate B is linear if and only if the set of consistent cuts satisfying
B is closed under the meet operation of the lattice of consistent cuts. The set of linear predicates
can be detected efficiently assuming efficient advancement property.

So far, the fact that the set of consistent cuts form a distributive lattice was not really exploited
in distributed computing literature. One of the fundamental theorems of Birkhoff states that every
finite distributive lattice can be generated by the poset formed by its join-irreducible elements.
Since the set of join-irreducible elements may be (exponentially) smaller than the lattice itself, this
theorem is very useful computationally.

In 2001, Garg and Mittal [GM01] introduced the notion of computation slice based on this
theorem. A slice of a computation with respect to a predicate B is a concise representation of all
consistent cuts that satisfy B. Slice has benefits in terms of state space reduction for predicate
detection. These applications were further explored by Mittal and Garg in [MG01, MG03].

In 2001, Garg and Skawratananond [GS01] defined a special type of partial order called string
and showed that Fidge-Mattern vector clock corresponds to a string realizer of a poset. They also
applied Dilworth’s theorem for the dimension of a finite distributive lattice to show that any vector
clock mechanism that can timestamp a consistent cut of a distributed computation on N processes
must have dimension at least N .

In 2002, Sen and Garg [SG02, SG03b] developed algorithms to compute slices for temporal
logic formulas. These algorithms are useful in detecting temporal logic formulas in a distributed
computation [SG02]. They implemented a tool called Partial Order Trace Analyzer (POTA)[SG03b]
for evaluating temporal logic formulas on partial order traces.

The purpose of this note is to provide the reader with relevant concepts in lattice theory and a
brief survey of its applications to distributed computing. The note is organized as follows. Section 2
provides the basic definitions in lattice theory. Section 3 gives applications of lattice theory in global
predicate detection, Section 4 in computation slicing, Section 5 in partial order trace analysis, and
Section 6 in timestamping events and consistent cuts.

2 Partially Ordered Sets and Lattices

A pair (X, P ) is called a partially ordered set or poset if X is a set and P is a reflexive, antisymmetric,
and transitive binary relation on X. We call X the ground set while P is a partial order on X. The
6 and divides relations on the set of natural numbers are some examples of partial orders.

We write x 6 y and y > x in P when (x, y) ∈ P . Also, x < y and y > x in P means x 6 y in
P and x 6= y. Let x, y ∈ X with x 6= y. If either x < y or y < x, we say x and y are comparable.
On the other hand, if neither x < y nor x > y, then we say x and y are incomparable.

A poset (X, P ) is called a chain or a linear order if every distinct pair of points from X is
comparable in P . Similarly, we call a poset an antichain if every distinct pair of points from X is
incomparable in P . The width of a poset is defined to be the largest antichain in the poset and is
denoted by width(P ).

Finite posets are often depicted graphically using a Hasse diagram. To define Hasse diagrams,
we first define a relation covers as follows. For any two elements x, y, we say y covers x if x < y

and ∀z ∈ X : x 6 z < y implies z = x. In other words, there should not be any element z with



x < z < y. A Hasse diagram of a poset is a graph with the property that there is an edge from x

to y if and only if y covers x. Furthermore, when drawing the figure in an Euclidean plane, x is
drawn lower than y when y covers x. For example, consider the poset (X, 6).

X
def
= {a, b, c, d, e}; 6

def
= {(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d), (a, e), (b, d), (b, e), (c, e), (d, e)}.

The first Hasse diagram in Figure 1 corresponds to this poset.
An element y ∈ X is called an upper bound for S ⊆ X if s 6 y in P , for every s ∈ S. An upper

bound y for S is the least upper bound for S, provided y 6 y′ in P for every upper bound y′ of
S. Lower bounds and greatest lower bounds are defined similarly. The greatest lower bound is also
referred to as infimum or meet. Similarly, the least upper bound is also referred to as supremum or
join. We denote the meet of {a, b} by a u b, and the join of {a, b} by a t b.

In the set of natural numbers ordered by the divides relation, the join corresponds to finding
the greatest common divisor and the meet corresponds to finding the least common multiple of two
natural numbers.

The greatest lower bound or the least upper bound may not always exist. In the third poset
in Figure 1, the set {b, c} does not have any least upper bound (although both d and e are upper
bounds).
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Figure 1: Only the first two posets are lattices.

A set of partially-ordered elements (or poset) forms a lattice if the greatest lower bound and the
least upper bound exist and are contained in the set for every pair of elements. Thus, the first two
posets in Figure 1 are lattices, whereas the third one is not. As another example, the power set of
a given set forms a lattice under ⊆ relation.

Example 1 For the set {x, y, z}, the power set is given by {∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z},
{x, y, z}}. The meet of the two elements of a power set is given by their intersection. For example,
the meet of {x, y} and {y, z} is {y}. Dually, the join is given by their union. For example, the
join of {x, y} and {y, z} is {x, y, z}. In other words, the meet and join operators of the lattice
correspond to intersection (∩) and union (∪), respectively.

The lattice in Example 1 is called a Boolean lattice. A subset of a lattice is a sublattice if
it is closed under the meet and join operations. For example, in the Boolean lattice the set of
all subsets of {x, y, z} that contain x forms a sublattice. However, the set of all subsets with
at most two elements does not form a sublattice. A lattice is distributive if its meet operator
distributes over its join operator. For example, since intersection distributes over union, a Boolean



lattice is distributive. The lattice of natural numbers with 6 defined as the relation divides is also
distributive. Two important nondistributive lattices, called diamond and pentagon, are shown in
Figure 2.
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Figure 2: Examples of nondistributive lattices

One of the Birkhoff’s results on lattices states that a lattice is distributive if and only if it does
not contain a pentagon or a diamond as a sublattice [DP90].

Now, consider a (finite) set of partially-ordered elements (not necessarily a lattice). A subset
of elements forms an order ideal (or simply an ideal) if whenever an element is contained in the
subset then all its preceding elements are also contained in the subset. Formally, a subset S of X

is an order ideal if it satisfies

∀x, y ∈ X : (x ∈ S) ∧ (y 6 x)⇒ (y ∈ S)

Example 2 For the poset in Figure 3(b), some examples of ideals are {a, b, c} and {a, b}. However,
{a, d} is not an ideal because it contains d but not b, which precedes d.

It is well-known that the set of ideals of a poset forms a distributive lattice under ⊆ relation
[DP90]. For a distributed computation, which is essentially a poset of events ordered by Lamport’s
happened-before relation [Lam78], the notion of order ideal coincides with that of consistent cut.
Therefore it can be deduced that the set of consistent cuts of a computation forms a distributive
lattice.

By using the notion of ideals, we went from a poset to a distributive lattice. Is it possible
to go in the reverse direction? The answer is provided by Birkhoff’s Representation Theorem
[DP90]. Intuitively, the result says that a finite distributive lattice can be uniquely characterized
by only a small subset of its elements known as join-irreducible elements An element of a lattice
is join-irreducible if (1) it is not the least element, and (2) it cannot be expressed as join of two
elements, both different from itself. Clearly, the join-irreducible elements of a Boolean lattice are
the singleton sets.

Example 3 The Boolean lattice in Example 1 has three join-irreducible elements, namely {x},
{y} and {z}. As expected, every other element that is different from ∅ can be expressed as the
union of some or all of these three elements.

Pictorially, in a finite lattice, an element is join-irreducible if and only if it has exactly one lower
cover, that is, there is exactly one edge coming into the element in the Hasse diagram. Intuitively,
the join-irreducible elements of a distributive lattice act as basis elements for the lattice. Every
element of the lattice, except for the least one (e.g., ∅ in a Boolean lattice), can be written as the
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Figure 3: (a) An example of a distributive lattice (b) its partial order representation.

join of some or all of these join-irreducible elements. The notion of meet-irreducible elements can
be defined dually. The meet-irreducible elements of a Boolean lattice are given by those subsets
of the ground set that have exactly one element missing. Thus, the meet-irreducible elements of
the Boolean lattice in Example 1 are {x, y}, {y, z} and {x, z}. Clearly, every other element that is
different from {x, y, z} can be expressed as the intersection of some or all of these three elements.

Birkhoff’s Theorem states that every finite poset P is isomorphic to the set of join-irreducible
elements of the set of ideals of P . Similarly, every finite distributive lattice is isomorphic to the
set of ideals of its join-irreducible elements. Thus, Birkhoff’s Theorem establishes the duality
between finite posets and finite distributive lattices. We can go from a finite poset to its dual finite
distributive lattice by constructing the set of its order ideals and from the finite distributive lattice
to the poset by restricting it to join-irreducible elements. For example, Figure 3(b) gives the poset
corresponding to the lattice in Figure 3(a).

3 Detecting Global Predicates

A predicate is simply a boolean function from the set of all consistent cuts to {0, 1}. Equivalently,
a predicate specifies a subset of consistent cuts in which the boolean function evaluates to 1.

We now define various classes of predicates. The class of meet-closed predicates are useful
because they allow us to compute the least consistent cut that satisfies a given predicate.

Definition 1 (Meet-Closed Predicates) A predicate B is meet-closed if for all consistent cuts
G, H:

B(G) ∧B(H)⇒ B(G uH)

The predicate “does not contain x” in the Boolean lattice is meet-closed whereas the predicate
“has size k” is not.

In a distributed computation, we define a predicate to be local if its truth value depends only
on the state of a single process. Any global predicate that can be expressed as a conjunction of
local predicates is meet-closed.

It follows from the definition that if there exists any consistent cut that satisfies a meet-closed
predicate B, then there exists the least one. Note that the predicate false which corresponds to
the empty subset and the predicate true which corresponds to the entire set of consistent cuts are



meet-closed predicates. We now give another characterization of meet-closed predicates that will
be useful for computing the least consistent cut that satisfies the predicate. To this end, we first
define the notion of a crucial event for a consistent cut.

Definition 2 (Crucial Element) For a consistent cut G $ E and a predicate B, we define e ∈
E −G to be crucial for G as:

crucial(G, e, B)
def
= ∀H ⊇ G : (e ∈ H) ∨ ¬B(H).

Definition 3 (Linear Predicates) A predicate B is linear if for all consistent cuts G $ E,

¬B(G)⇒ ∃e ∈ E −G : crucial(G, e, B).

Intuitively, this means that any consistent cut H, that is at least G, cannot satisfy the predicate
unless it contains e. Now, we have

Theorem 1 ([CG95]) A predicate B is linear if and only if it is meet-closed.

Proof: First assume that B is not closed under meet. We show that B is not linear. Since B is
not closed under meets, there exist two consistent cuts H and K such that B(H) and B(K) but
not B(H uK). Define G to be H uK. G is a strict subset of H ⊆ E because B(H) but not B(G).
Therefore, G cannot be equal to E. We show that B is not linear by showing that there does not
exist any crucial element for G. A crucial element e, if it exists, cannot be in H − G because K

does not contain e and still B(K) holds. Similarly, it cannot be in K − G because H does not
contain e and still B(H) holds. It also cannot be in E − (H ∪K) because of the same reason. We
conclude that there does not exist any crucial event for G.

Now assume that B is not linear. This implies that there exists G $ E such that ¬B(G) and
none of the elements in E−G is crucial. We first claim that E−G cannot be a singleton. Assume
if possible E − G contains only one element e. Then, any consistent cut H that contains G and
does not contain e must be equal to G itself. This implies that ¬B(H) because we assumed ¬B(G).
Therefore, e is crucial contradicting our assumption that none of the elements in E −G is crucial.
Let W = E − G. For each e ∈ W , we define He as the consistent cut that contains G, does not
contain e and still satisfies B. It is easy to see that G is the meet of all He. Therefore, B is not
meet-closed because all He satisfy B, but not their meets. 2

Example 4 Consider the Boolean Lattice generated by all subsets of {1, ..., n}. Let the predicate
B defined to be true on a consistent cut G as “If G contains any odd i < n, then it also contains
i + 1.” It is easy to verify that B is meet-closed. Given any G for which B does not hold, the
crucial elements consist of

{i|i is even, 2 6 i 6 n, i− 1 ∈ G, i 6∈ G}

Example 5 Consider a distributed computation on two processes P1 and P2 and the predicate B

to be true on a consistent cut if both the processes are in the critical section. Given any consistent
cut G for which B does not hold, either P1 is not in the critical section, or P2 is not in the critical
section. In the former case, the next event of P1 after G, entering the critical section is crucial
and in the latter case the event of P2 entering the critical section is crucial. This example can be
easily generalized to any global boolean predicate that can be expressed as a conjunction of local
predicates.



Our interest is in detecting whether there exists an consistent cut that satisfies a given pred-
icate B. We assume that given a consistent cut, G, it is efficient to determine whether B is
true for G or not. On account of linearity of B, if B is evaluated to be false in some consistent
cut G, then we know that there exists a crucial event in E−G. We make an additional assumption:

(Efficient Advancement Property) There exists an efficient (polynomial time) function to
determine the crucial event.

We now have

Theorem 2 ([CG95]) If B is a linear predicate with the efficient advancement property, then
there exists an efficient algorithm to determine the least consistent cut that satisfies B (if any).

Proof: An efficient algorithm to find the least cut in which B is true is given in Figure 4. We
search for the least consistent cut starting from the empty consistent cut. If the predicate is false
in the consistent cut, then we find the crucial element using the efficient advancement property
and then repeat the procedure. If this is the last state on the process, then we return false else we
advance along the process that has the crucial event. 2

boolean function detect(B:boolean predicate, P :poset)
var

G: consistent cut initially G := {};

while (¬B(G) ∧ (G 6= P )) do
Let e be such that crucial(G, e,B) in P ;
G := G ∪ {e}.

endwhile;
if B(G) return true;
else return false;

Figure 4: An efficient algorithm to detect a linear predicate

Assuming that crucial(G, e, B) can be evaluated efficiently for a given poset, we can determine
the least consistent cut that satisfies B efficiently even though the number of consistent cuts may be
exponentially larger than the size of the poset. In practice, most meet-closed predicates B satisfy
the efficient advancement property. All the examples in this paper do.

So far we have focused on meet-closed predicates. All the definitions and ideas carry over
to join-closed predicates. If the predicate B is join-closed, then one can search for the largest
consistent cut that satisfies B in a fashion analogous to finding the least consistent cut when it is
meet-closed.

Predicates that are both meet-closed and join-closed are called regular predicates.

Definition 4 (Regular Predicates [GM01]) A predicate is regular if the set of consistent cuts
that satisfy the predicate forms a sublattice of the lattice of consistent cuts. Equivalently, a predicate
B is regular with respect to P if it is closed under t and u, i.e., for all consistent cuts G, H of the
poset P :

B(G) ∧B(H)⇒ B(G tH) ∧B(G uH)



The set of consistent cuts that satisfy a regular predicate forms a sublattice of the lattice of all
consistent cuts. Some examples of regular predicates are:

• Consider the predicate B as “there is no outstanding message in the channel.” We show that
this predicate is regular. Observe that B holds on a consistent cut G if only if for all send
events in G the corresponding receive events are also in G. It is easy to see that if B(G) and
B(H), then B(G∪H). To see that it holds for G∩H, let e be any send event in G∩H. Let
f be the receive event corresponding to e. From B(G), we get that f ∈ G and from B(H),
we get that f ∈ H. Thus f ∈ G ∩H. Hence, B(G ∩H). Similarly, the following predicates
are also regular.

– There is no token message in transit.

– No token message is in transit between processes P1 and P5.

– Every “request” message has been “acknowledged” in the system.

• Any local predicate is regular. Thus the following predicates are regular.

– The leader has sent all “prepare to commit” messages.

– Process Pi is in a “red” state.

• Channel predicates such as “there are at most k messages in transit from Pi to Pj” and “there
are at least k messages in transit from Pi to Pj” are also regular.

It is easy to verify that the class of regular predicates is closed under conjunction. The closure
under conjunction implies that the following predicates are also regular:

• No process has the token, and no channel has the token.

• Any conjunction of local predicates.

4 Slicing Distributed Computations

Suppose we are not interested in all consistent cuts of a computation but in only a subset of
them, namely those that satisfy some property of interest to us expressed as a predicate mapping
a consistent cut to a boolean value. Further, suppose the set of consistent cuts for which the
predicate evaluates to true forms a sublattice of the lattice of consistent cuts. A sublattice of a
distributive lattice is also a distributive lattice [DP90]. Therefore, using Birkhoff’s Theorem, the
sublattice generated by the consistent cuts satisfying the predicate is completely characterized by
the join-irreducible elements of the sublattice.

Example 6 The distributed computation shown in Figure 5(a) consists of two processes P1 and
P2. Process P1 executes events a and b, whereas process P2 executes events c and d. On executing
b, P1 sends a message to P2, which is received by P2 at d. The set of consistent cuts of the
computation are shown in Figure 5(b). Suppose we are interested in only those consistent cuts for
which no messages are in transit—also known as strongly consistent cuts. They have been shaded
in Figure 5(b) and are shown separately in Figure 5(c). The set of strongly consistent cuts forms
a sublattice and its join-irreducible elements have been drawn with thick boundaries. The poset
induced on the set of join-irreducible elements of the sublattice is shown in Figure 5(d).
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Figure 5: (a) A distributed computation, (b) the distributive lattice generated by its consistent
cuts, (c) the sublattice containing all consistent cuts for which no messages are in transit, and
(d) the poset induced on the set of join-irreducible elements of the sublattice.

In case the set of consistent cuts that satisfy the predicate does not form a sublattice, we add
one or more other consistent cuts—that do not satisfy the predicate—to complete the sublattice.
The consistent cuts are added in such a way so as to minimize the total number of consistent cuts
in the resulting sublattice. The sublattice is then represented using the set of its join-irreducible
elements. This succinct representation of a possibly large set of consistent cuts satisfying some
property is referred to as a slice [GM01, MG01].

Theorem 3 The slice of a distributed computation is uniquely defined for all predicates.

Proof: Let D denote the set of all consistent cuts that satisfy the predicate. We show that the
sublattice with the least number of consistent cuts that satisfy D is uniquely defined. Assume
the contrary. Let X and Y be two distinct sublattices with the least number of consistent cuts
such that (1) cardinality(X) = cardinality(Y ), and (2) both X and Y contain D. Consider Z =
X ∩ Y . Clearly, Z also contains D. Also, since X 6= Y , cardinality(Z) < cardinality(X) and
cardinality(Z) < cardinality(Y ). It can be proved that intersection of two sublattices is also a
sublattice. This implies that Z is a sublattice that contains D and has fewer number of consistent
cuts than either X or Y —a contradiction. 2

The slice for a predicate may contain consistent cuts that do not satisfy the predicate—namely
those that are added to complete the sublattice. A slice is lean if it contains only those consistent
cuts that satisfy the predicate [MG01]. Clearly, the slice of a computation for a predicate is lean if
and only if the predicate is regular.

Another way of looking at slice is that it specifies which events should be executed in an atomic
fashion and the order in which they should be executed. For example, the slice shown in Figure 5(d)
and redrawn in Figure 6(a) specifies that events b and d should be executed atomically after events
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Figure 6: (a) A slice depicting the events that are to executed atomically, and (b) the graph
representation of the slice in (a).

a and c have been executed. This is expected because any consistent cut which includes the send
event of a message but not its receive will have at least one message in transit.

For algorithmic purposes, it is more convenient to represent a slice using a directed graph on
events possibly containing cycles; all events that are to be executed atomically form a strongly
connected component. The notion of consistent cut, of course, has to be extended appropriately.

We define a consistent cut (global state) on directed graphs as a subset of vertices such that if
the subset contains a vertex then it contains all its incoming neighbours. Observe that the empty
set ∅ and the set of all vertices are trivial consistent cuts.

We introduce a fictitious global initial and a global final event, denoted by ⊥ and >, respectively.
The global initial event occurs before any other event on the processes and initializes the state of
the processes. The global final event occurs after all other events on the processes. Any non-trivial
consistent cut will contain the global initial event and not the global final event. Therefore, every
consistent cut of a computation in the model without ⊥ and > is a non-trivial consistent cut of
the computation in the model with ⊥ and > and vice versa. Note that the empty consistent cut,
∅ and the final consistent cut E, in the model without ⊥ and > correspond to {⊥} and E − {>}
in our model, respectively.

We denote the slice of a computation 〈E,→〉 with respect to a predicate p by slice(〈E,→〉, p).
Note that 〈E,→〉 = slice(〈E,→〉, true). Every slice derived from the computation 〈E,→〉 has the
trivial consistent cuts (∅ and E) among its set of consistent cuts. A slice is empty if it has no
non-trivial consistent cuts [MG01]. In the rest of the paper, unless otherwise stated, a consistent
cut refers to a non-trivial consistent cut. In general, a slice will contain consistent cuts that do not
satisfy the predicate (besides trivial consistent cuts).

The graph representation of the slice shown in Figure 6(a) is depicted in Figure 6(b). Every
sublattice of the lattice of consistent cuts (of a computation) can be generated by a graph obtained
by simply adding zero or more edges to the computation [Gar02a].

Now, the slice of a computation for a predicate can be computed as follows. For every pair of
events e and f , detect whether there is a consistent cut of the computation satisfying the predicate
that contains f but does not contain e. An edge is added from e to f if and only if the detection
algorithm returns “no” as the answer. The reason is that, on adding an edge from e to f in a
graph, the resulting graph retains all consistent cuts of the original graph except those that contain
f but not e. Therefore if no consistent cut satisfying the predicate that contains f but not e exists,
then an edge from e to f can be safely added to the graph without eliminating any of the desired
consistent cuts. Also, note that given a slice of a computation for a predicate, we can detect the
predicate in the computation easily by simply testing the slice for emptiness. Therefore it follows
that:

Theorem 4 There exists an efficient algorithm for computing the slice for a predicate if and only
if there exists an efficient algorithm for detecting the predicate.



More efficient algorithms for computing the slice for special classes of predicates including linear
(and regular) predicates, complement of regular predicates, and k-local predicates for constant k

can be found elsewhere [GM01, MG01, MG03].
A useful operation on slices is composition [MG01]. Given two slices, slice composition can be

used, for example, to compute a graph whose consistent cuts are exactly those that belong to both
the slices. This is referred to as composition with respect to conjunction. Dually, slices can also
be composed with respect to disjunction. Slices can be composed by simply manipulating edges
in their graph representation. Specifically, to compose slices with respect to conjunction, we add
an edge from an event e to an event f if and only if the edge is present in the (transitively-closed)
graph representation of at least one of the slices [MG01]. Similarly, to compose slices with respect
to disjunction, we add an edge from an event e to an event f if and only if the edge is present in
the graph representation of both the slices [MG01]. Also, an algorithm to compute the slice with
respect to the negation of a regular predicate has been given in [MG01].

Slicing can be used to facilitate predicate detection as illustrated by the following scenario.
Consider a predicate B that is a conjunction of two clauses B1 and B2. Now, assume that B1 is
such that it can be detected efficiently but B2 has no structural property that can be exploited
for efficient detection. An efficient algorithm for locating some consistent cut satisfying B1 cannot
guarantee that the cut also satisfies B2. Therefore, to detect B, without computation slicing, we
are forced to use techniques such as breadth first search [CM91], depth first search [AV01], and
partial-order methods (a model-checking technique) [SUL00], which do not take advantage of the
fact that B1 can be detected efficiently. With computation slicing, however, we can first compute
the slice for B1. If only a small fraction of consistent cuts satisfy B1, then instead of detecting
B in the computation, it is much more efficient to detect B in the slice. Therefore by spending
only polynomial amount of time in computing the slice we can throw away exponential number of
consistent cuts, thereby obtaining an exponential speedup overall. In fact, our experimental results
indicate that slicing can indeed lead to an exponential improvement over existing techniques for
predicate detection in terms of time and space [MG03, SG03b].

5 Analyzing Partial Order Traces

Traditional techniques for eliminating bugs in concurrent programs (message-passing or shared-
memory based) include testing and formal methods. Testing techniques are ad-hoc and do not allow
for formal specification and verification of logical properties that a program needs to satisfy. Formal
methods such as model checking and theorem proving do not scale well and need considerable
manual effort. Given that formal methods, in general, work on an abstract model of a program
and make assumptions on the environment, even if a program has been formally verified, we still
cannot be sure of the correctness of a particular implementation. However, for highly dependable
systems such as avionics or automobiles, it is crucial to reason on the particular implementation.

We focus on a technique called runtime verification that addresses some of the problems in
testing and formal methods. This technique enables automatic verification of implementations of
large programs using temporal logic specifications. The scalability in runtime verification comes
from examining only a single execution trace of a program like in testing.

Next we show how to use computation slicing with respect to temporal logic predicates for
partial order trace analysis.

We model a finite trace of a program as a partial order between events, for example Lamport’s
happened-before relation [Lam78]. Most runtime verification tools such as MaC tool [KKL+01] and
NASA’s JPaX tool [HR01] model a trace as a total order (interleaving) of events. Using a partial



order model, we can capture exponential number of possible total order traces succinctly. This
translates into finding bugs that are not found with MaC or JPaX tools. Also, a partial order
model is a more faithful representation of concurrency [Lam78] and this model enables us to apply
our theory to distributed programs as well as shared memory programs.

5.1 Computation Slices for Temporal Logic Predicates

Many specifications of distributed programs are temporal in nature because we are interested in
properties related to the sequence of states during an execution rather than just the initial and
final states. For example, the liveness property in dining philosophers problem, “a philosopher,
whenever gets hungry, eventually gets to eat”, is a temporal property. The concept of slicing is
useful for detecting temporal logic predicates since it enables us to reason only on the part of the
global state space that could potentially affect the predicate.

We show in [SG02] that temporal predicates EF(p), EG(p), and AG(p) are regular when p is
regular and we call such predicates as temporal regular predicates. We say that a consistent cut
C satisfies EF(p) if p holds for some consistent cut on some path from C to the final consistent
cut. We say that a consistent cut C satisfies EG(p) (resp. AG(p)) if p holds for all cuts on
some (resp. all) path from C to the final consistent cut, Algorithms in [GM01, MG01] for regular
predicates assume the efficient advancement property and the property that given a consistent cut,
it is efficient to determine whether the predicate holds for the cut or not. However, these properties
do not hold for temporal regular predicates. With the results of [SG02], we can efficiently use
computation slicing for analyzing traces in the subset of well-known temporal logic CTL [CE81]
with the following properties.

• Atomic propositions are regular predicates and their negations.

• Temporal operators are EF, EG, and AG.

We call this logic Regular CTL plus (RCTL+), where plus denotes that the disjunction and negation
operators are included in the logic. The predicate detection problem is to decide whether the initial
cut of the computation satisfies a given predicate. In RCTL+, we use a restricted set of temporal
predicates because we do not yet have efficient algorithms to compute slices for temporal predicates
such as AF(p) or AX(p) in CTL. However, our experimental results suggest that RCTL+ contains
a widely used subset of CTL.

Examples of temporal predicates are the complement of the liveness property in dining philoso-
phers such asEF(hungry∧EG(¬eat)) or the reset state is eventually reachable such asAG(EF reset).
Next, we briefly describe our computation slicing algorithms for RCTL+ predicates presented in
[SG02].

Since the consistent cuts of the slice of a computation is a subset of consistent cuts of the
computation, the slice can be obtained by adding edges to the computation. In other words, the
slice contains additional edges that do not exist in the computation. Below, we will show which
edges we should add to a computation for computing slices.

Now we explain Algorithm A1 in Figure 7 for generating the slice of a computation with respect
to EF(p). From the definition of EF(p), all consistent cuts of the computation that can reach the
greatest consistent cut that satisfies p, call this cut W , also satisfies EF(p). Furthermore, these cuts
are the only ones that satisfy EF(p). We can find W using slice(〈E,→〉, p) when it is nonempty.
To ensure that all cuts that cannot reach W do not belong to slice(〈E,→〉,EF(p)), we add edges
from > to the successors of events in the frontier of W in 〈E,→〉. A frontier of a consistent cut
is the set of those events of the cut whose successors, if they exist, are not contained in the cut.
Adding an edge from > to an event makes any cut that contains that event trivial.



Algorithm A1

Input: A computation 〈E,→〉 and slice(〈E,→〉, p)
Output: slice(〈E,→〉,EF(p))
1. Let G be 〈E,→〉 and let W be the final cut of slice(〈E,→〉, p)
2. If W exists then
3. ∀ e ∈ frontier(W ): add an edge from the vertex > to succ(e) in G

4. return G

5. else return empty slice

Algorithm A2

Input: A computation 〈E,→〉 and slice(〈E,→〉, p)
Output: slice(〈E,→〉,AG(p))
1. Let G be slice(〈E,→〉, p)
2. For each pair of vertices (e, f) in G such that,

(i) ¬(e → f) in 〈E,→〉, and
(ii) (e → f) in G

add an edge from vertex e to the vertex ⊥
3. return G

Algorithm A3

Input: A computation 〈E,→〉 and slice(〈E,→〉, p)
Output: slice(〈E,→〉,EG(p))
1. Let G be slice(〈E,→〉, p)
2. For each pair of vertices (e, f) in G such that,

(i) ¬(e → f) in 〈E,→〉, and
(ii) (e → f) and (f → e) in G

add an edge from vertex e to the vertex ⊥
3. return G

Figure 7: Algorithm for generating a slice with respect to EF(p), AG(p) and EG(p)

The following theorem is crucial in obtaining Algorithm A2 in Figure 7 that generates the slice
for AG(p).

Theorem 5 ([SG02]) Given a computation 〈E,→〉 and slice(〈E,→〉, p), a consistent cut D in
〈E,→〉 satisfies AG(p) iff it includes vertex e of every additional edge (e, f) in slice(〈E,→〉, p).
Proof Sketch:

If a consistent cut D does not include vertex e then there exists a consistent cut H that can be
reached from D in the computation such that H does not include e but includes f . In this case, it
is clear that H does not satisfy p since (e, f) is an edge in the slice(〈E,→〉, p) and every consistent
cut of slice(〈E,→〉, p) that includes f must include e. Therefore from the definition of AG(p), D

does not satisfy AG(p).
Now we prove the other direction. If a consistent cut D does not satisfy AG(p) then there

exists a consistent cut H reachable from D such that H does not satisfy p. We know that only the
consistent cuts that include f but not e do not satisfy p. Since H is reachable from D and H does
not include e, we have that D also does not include e. 2

Since the consistent cuts that satisfy AG(p) is a subset of consistent cuts that satisfy p, the slice
for AG(p) can be obtained by adding edges to the slice for p. Using the above Theorem, we add an
edge from e to ⊥ for any additional edge (e, f) in slice(〈E,→〉, p) to obtain slice(〈E,→〉,AG(p)).



This ensures that consistent cuts that do not include vertex e of any additional edge (e, f) are
disallowed, whereas the rest belongs to slice(〈E,→〉,AG(p)).

The algorithm for EG(p) slicing displayed in Figure 7 is similar to the AG(p) slicing algorithm.
However in this case, for each additional edge (e, f) that generates a non-trivial strongly connected
component in slice(〈E,→〉, p), we add an edge from the vertex e to the vertex ⊥. Intuitively, if
a cut C does not include such a component then, as in the case of AG(p), there exists a cut D

reachable from C such that D does not satisfy p. However, different from AG(p) case, now there
exists such a cut D on all paths from C to the final state. Using the definition of EG(p), it is clear
that C does not satisfy EG(p).

5.2 Experimental Study: Partial Order Trace Analyzer (POTA)

We implemented our temporal logic slicing algorithms in a prototype tool called Partial Order Trace
Analyzer (POTA) [SG03b, SG03a] that is used for checking execution traces of distributed programs
with temporal logic predicates. POTA consists of an instrumentation module for generating partial
order execution traces, a translator module that translates execution traces into a well-known model
checker SPIN’s input language Promela [Hol97] and an analyzer module. The use of computation
slicing for temporal logic verification is the most significant aspect of POTA and constitutes the
analyzer module.

Figure 8 displays our predicate detection algorithm in POTA that uses slicing algorithms. The
complexity of predicate detection for RCTL+ is dominated by the complexity of computing the
slice with respect to a non-temporal regular predicate, which has O(n2|E|) complexity [GM01,
MG01]. Therefore, the overall complexity of predicate detection for RCTL+ without negation and
disjunction operators is O(|p| ·n2|E|), where |p| is the number of boolean and temporal operators in
p. When the predicate contains disjunction or negation operators the slice may not be lean. In this
case, we may have to take an extra step. This is because the initial state of the slice may in fact
not satisfy the predicate. Therefore, we employ the translator module of POTA and translate the
slice into Promela then we use SPIN to check the trace. This approach may lead to exponential-
time complexity for RCTL+ predicates. However, the slice is in general much smaller than the
computation which we validate with experimental studies.

Input: A computation 〈E,→〉 and a predicate p

Output: Predicate is satisfied or not
1. Recursively process p from inside to outside while applying temporal and boolean operators

to compute slice(〈E,→〉, p)
2. If initialCut(〈E,→〉) 6= initialCut(slice(〈E,→〉, p) then
3. return false and counterexample

else
4. if p does not contain ¬ or ∨ then
5. return true
6. else translate slice(〈E,→〉, p) into Promela and run SPIN

Figure 8: Predicate Detection using Slicing

In order to evaluate the effectiveness of POTA, we performed experiments with scalable pro-
tocols, comparing our computation slicing based approach with partial order reduction based
approach of SPIN [Hol97]. We performed experiments on several protocols such as the Asyn-
chronous Transfer Mode Ring (ATMR) [ISO93], General Inter-ORB Protocol (GIOP) [OMG97],
dining philosophers and leader election. We could model almost all temporal logic specifications of
the procotols in RCTL+. We verified configurations with 250 processes using POTA, whereas SPIN
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failed to verify configurations with more than 10 processes due to state explosion. Detailed results
of our experiments are available from POTA web site [SG03a]. The experimental work proves that
for large problem sizes, computation slicing is an effective technique.

6 Timestamping Events and Global States

In this section, we show applications of dimension theory of partial orders to timestamping events
and global states of a computation. We also provide the necessary background in the dimension
theory.

6.1 Dimension

A family R = {L1, L2, . . . , Lt} of linear orders on X is called a chain realizer of a poset (X, P ) if
P = ∩R. x < y ∈ Li ∩ Lj if x < y in both Li and Lj . We also say that R realizes P . Figure 9
shows a poset P in which {L1, L2} realizes P .

It can be shown [Tro92] that R is a realizer of P if and only if for every x, y ∈ X with x ‖ y

(x incomparable to y) in P , there exist distinct integers i, j with 1 6 i, j 6 t for which x < y in Li

and y < x in Lj .

Definition 5 ([Tro92]) For any poset (X, P ), the dimension of (X, P ), denoted by dim(X, P ), is
the least positive integer t for which there exists a family R = {L1, L2, . . . , Lt} of linear extensions
of P so that P = ∩R = ∩t

i=1Li.

The dimension of the poset in Figure 9 is 2. The concept of dimension provides us a way to
encode a partial order. The elements of a partial order with dimension t can be encoded with a
t-dimensional vector as follows. For any element x, the vector vx is defined as follows: vx[i] =
number of elements less than x in Li, for 1 6 i 6 t. Given code for two elements vx and vy, we
have the following order:

vx < vy ⇐⇒ ∀i : vx[i] < vy[i] (5.1)

For example, the code for a and b in the poset in Figure 9 is (2, 3) and (3, 1) based on the realizer.
Based on the code and (5.1), it can be easily determined that a and b are concurrent. We call the
order given by (5.1) the chain order.

The dimension of a poset can be arbitrarily large. Consider a poset (X, P ) where X =
{a1, a2, . . . , an} ∪ {b1, b2, . . . , bn}, and ai < bj in P if and only if i 6= j, for i, j = 1, 2, . . . , n.
This class of posets is known as the standard example and denoted by Sm. Figure 10 shows the
diagram for S5. The following Theorem is due to Dushnik and Miller [DM41].



b1 b2 b3 b4 b5

a1 a2 a3 a4 a5

Figure 10: S5

Theorem 6 ([DM41]) dim(Sm) = m.

Let Li = [a1, . . . , ai−1, ai+1, . . . , am, bi, ai, b1, . . . , bi−1, bi+1, . . . , bm], where a1 is the lowest element,
and bm is the highest element in chain Li Then R = {L1, L2, . . . , Lm} is a realizer of Sm.

We saw that classical dimension theory provides lower bounds on the dimension of vectors when
the comparison is based on the chain order. On the other hand, the vector clocks in distributed
computing use vector ordering given by the following (6.2) which we call vector order.

u < v ≡ ∀k : 1 6 k 6 N : u[k] 6 v[k]∧
∃j : 1 6 j 6 N : u[j] < v[j]

(6.2)

We generalize the concepts in dimension theory so that the ordering used between codes is identical
to (6.2). We first give the definition of a string.

Definition 6 (string) A poset (X, P ) is a string if and only if ∃f : X → N (the set of natural
numbers) such that ∀x, y ∈ X : x < y iff f(x) < f(y)

The set of elements in a string which have the same f value is called a knot. For example, a
poset (X, P ) where X = {a, b, c, d} and P = {(a, b), (a, c), (a, d), (b, d), (c, d)} is a string because
we can assign f(a) = 0, f(b) = f(c) = 1, and f(d) = 2. Here, b and c are in the same knot. The
difference between a chain and a string is that a chain requires existence of a one-to-one mapping
such that x < y iff f(x) < f(y). For strings, we drop the requirement of the function to be one-to-
one. We represent a finite string by the sequence of knots in the string. Thus, P is equivalent to
the string {(a), (b, c), (d)}.

A chain is a string in which every knot is of size 1. An anti-chain is also a string with exactly
one knot.

We write x 6s y if x 6 y in string s, and x <s y if x < y in string s.

Definition 7 (String Realizer) For any poset (X, P ), a set of strings S is called a string realizer
iff ∀x, y ∈ X : x < y in P if and only if (1) ∀s ∈ S : x 6s y, and (2) ∃t ∈ S : x <t y.

The definition of less-than relation between two elements in the poset based on the strings is
identical to the less-than relation as used in vector clocks. This is one of the motivation for defining
string realizer in the above manner. A string realizer for the poset in Fig. 9 is given by two strings

s1 = {(c), (d, a), (b)} s2 = {(d, b), (c, a)}

Now, analogous to the dimension we define

Definition 8 (String Dimension) For any poset (X, P ), the string dimension of (X, P ), denoted
by sdim(X, P ), is the size of the set S with the least number of strings such that S is a string realizer
for (X, P ).



Example 7 Consider the poset (X, P ) as follows. X = {∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}}, P =
{(A, B) ∈ X ×X : A ⊆ B}. A string realizer for the poset can be obtained as follows. For each set
A ∈ X, we use a bit vector representation of the set A. Thus, {a, c} is represented by (1, 0, 1) and
the set {a, b} is represented by (1, 1, 0). This representation gives us a string realizer with three
strings such that every string has exactly two knots.

It may appear, at first, that the string dimension of a poset may be much smaller than the
chain dimension. However, this is not the case as shown by the following result.

Theorem 7 ([GS01]) For any poset (X, P ) such that sdim(P ) > 2, sdim(P ) = dim(P )

6.2 Lower Bound on Dimension of Vector Clocks

As we have mentioned before, the definition of a string realizer is identical to the definition for
vector clocks in distributed systems. A distributed computation on N processes can be modeled as
a poset of events (E,→) of width N . Fidge and Mattern’s vector clocks are simply string realizers
of the poset (E,→).

We first consider lower bounds on the (string) dimension of vector clocks. The following result
is due to Charron-Bost[CB91]. The proof shown here is different and taken from [GS01].

Theorem 8 For every N , there exists a distributed computation (E,→) on N processes such that
any assignment from E to N k that captures concurrency relation on E has k > N .

Proof: The result is trivially true for N equal to 1. For any N > 2, consider the standard example
SN shown in Figure 10. Define ai and b(i mod N)+1 to be on process Pi. This computation is on N

processes. By Dushnik and Miller’s Theorem, this poset has dimension N . From Theorem 7, the
computation has string dimension also equal to N . Any assignment from E to N k that captures
concurrency relation, results in a string realizer with k strings. Since the string dimension is N , it
follows that k > N . 2

Next we show that N -dimensional vector clocks of Fidge and Mattern (FM vectors for short)
have an additional property that makes it necessary to have dimension N for all computations. In
particular, FM vectors satisfy the following property. If f and g are two distinct events such that
event f is on process Pi, then

f.v[i] 6 g.v[i]⇒ f → g (8.3)

where e.v[i] denotes the ith component of the vector clock assigned to the event e. As a result of
this property FM vectors can also be used to timestamp elements of another poset - the lattice of
consistent cuts of the computation (E,→).

For a consistent cut F , we define its timestamp as

F.v[i] = max{e.v[i] | e ∈ F} (8.4)

It can be shown that any vector clock mechanism based on 8.4 that satisfies 8.3 captures the
relation ⊆ between consistent cuts, i.e., F ⊆ G ⇐⇒ F.v 6 G.v.

We have earlier mentioned that the set of all consistent cuts under the relation ⊆ forms a
distributive lattice. A result due to Dilworth tells us the dimension of a distributive lattice.

Theorem 9 ([Dil50]) Let L be a distributive lattice generated by a poset (X, P ). Then dim(L) =
width(P ).

Therefore, we have

Theorem 10 ([GS01]) Any vector clock mechanism that captures ⊆ relation on the set of con-
sistent cuts in a distributed computation of width N must have at least N coordinates.



7 Conclusions

The theory of posets and lattices has many practical applications in distributed computing. Be-
sides the applications in predicate detection, lattice theory is also useful in predicate control
[TG99, MG00]. We believe that the future will bring even more applications of the theory of
order to distributed computing. For example, the concepts of Möbius functions, Zeta polynomial
and Generating functions (see the book on Enumerative Combinatorics, Vol 1, by R.Stanley Chap-
ter 3 [Sta86]) in posets, or modular lattices, geometric lattices etc. (see the book on General Lattice
Theory by Grätzer [Gra78]) have not yet found applications in distributed computing.

We also expect, enrichment of the poset and lattice theory from distributed computing applica-
tions. The concepts of linear predicates, efficient advancement property, algorithms for computing
slices etc. can be viewed as computational lattice theory.

In addition to benefits in distributed computing, techniques in slicing have applications in
combinatorics. A combinatorial problem usually requires enumerating, counting or ascertaining
existence of structures that satisfy a given property B. We cast the combinatorial problem as a
distributed computation such that there is a bijection between combinatorial structures satisfying
B and the global states that satisfy a property equivalent to B. We then apply results in slicing a
computation with respect to a predicate to obtain a slice of only those global states that satisfy B.
This gives us an efficient (polynomial time) algorithm to enumerate, count or detect structures that
satisfy B when the total set of structures is large but the set of structures satisfying B is small. In
[Gar02a], we illustrate this technique by analyzing problems in integer partitions, set families, and
set of permutations.
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